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Because the last expression is independent of k or T * ,  its negative 
logarithm is a lower bound on I ( p m ) ,  that is 

I ( ~ ~ )  2 - E ~ *  iog~re-” /4 .H2(f”f7 , )  
= - E ~ *  log E ~ - ~ / ~  cmw 

= -log(2-”(1+ e-*m)“) 
= m l o g 2  - m l o g ( l +  ePtm) 

= m log2 - m log (1 + e-fcm) 

Choosing m = An1/(’”+’) (A > 0) to maximize the rate in the 
above lower bound, we get the following theorem. 

Theorem: 

Taking k = 0, Y = 1 therefore s = 1 in the theorem, we obtain the 

Corollary: 
optimal rate lower bound in [13], as shown in the corollary below. 

Remarks: 
In general, we can consider the LIP(s ,  C) classes on 
[0, lId ( d  2 1). Minimax lower bounds on redundancy of rates 
O(nd/ (2s+d))  can be obtained. These rates are believed to be 
optimal in the sense that universal codes can be constructed 
to achieve these rates. In the case of LIP(  1, C) the rate n1/3 
has been shown to be optimal in [13]. 
The proof for the minimax lower bound logn in the para- 
metric case follows from the asymptotic expansion of I(p) in 
[l] or [8] for smooth priors. Superficially, this approach has 
a continuous flavor since p needs to have nice smoothness 
properties on the whole parameter space, whereas the proof 
in the nonparametric case as we just saw has a discrete 
flavor because of the hypercube subclass over which I(@”) 
is estimated. Heuristically, however, the continuous prior can 
be made discrete. Under regularity conditions, we believe that 
I ( p )  should give the same lower bound logn even for a 
discrete uniform prior p on a grid subset of the parametric 
space, as long as the grid size is of the order or smaller than 
n-1/2. Note that the nearest neighbors on the hypercube for the 
optimal choice m = nl/(”+l) also have Hellinger distances of 
order n-’/’, the rate at which n i.i.d. data points can possibly 
distinguish two probability densities. In other words, what 
seems essential to both the parametric and the nonparametric 
case is to find a subclass of densities whose closest elements 
are n-’/’ apart from each other in terms of Hellinger distance. 
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Abstract-Given a discrete memoryless source (DMS) with probability 
mass function P, we seek first an asymptotically optimal description of the 
source with distortion not exceeding AI,  followed by an asymptotically 
optimal refined description with distortion not exceeding A2 < Al. The 
rate-distortion function for successive refinement by partitioning, denoted 
R(P, Al. Az), is the overall optimal rate of these descriptions obtained 
via a two-step coding process. We determine the error exponents for 
this two-step coding process, namely, the negative normalized asymptotic 
log likelihoods of the event that the distortion in either step exceeds 
its prespecified acceptable value, and of the conditional event that the 
distortion in the second step exceeds the prespecified value given the rate 
and distortion of the code for the first step. We show that even when the 
rate-distortion functions for one- and two-step coding coincide, the error 
exponent in the former case may exceed those in the latter. 

Index Terms-Covering Lemma, error exponent, rate-distortion func- 
tion, successive refinement by partitioning. 
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I. INTRODUCTION 
The problem of successive refinement of information by partition- 

ing, also referred to variously as "hierarchical lossy data compres- 
sion" and "sequential aproximations," has received much attention 
over the years (KoshClev [9], [lo], Equitz-Cover [4], Yamamoto [19], 
Rimoldi [15]). Related problems include those of "multiple descrip- 
tions'' (cf. [l],  [3], [14], [17], [18], [20]) and that of determining 
the achievable rate region for cascade communication systems [19]. 
Given a discrete memoryless source (DMS) with probability mass 
function (pmf) P,  and a suitable distortion measure, suppose that we 
first seek to describe the source with distortion not exceeding Ai .  The 
(asymptotically) minimum rate of coding is, of course, given by the 
rate distortion function R(P,  AI ) .  Subsequently, if a better (finer) 
description is required, say with distortion A2 < A I ,  additional 
information at rate A R can be provided, so that the overall augmented 
rate is R(P, A I )  + AR.  Clearly, R(P, AI) + A R  2 R(P, Az) .  It 
is of interest to determine the rate-distortion function R(P,  A I ,  A2) 
for this two-step coding process, and find conditions under which it 
coincides with R(P,  Az). 

The condition under which these two rate-distortion functions 
coincide was determined independently by KoshClev [9] and Equitz- 
Cover [4], and subsequently given a geometrical interpretation by 
Rimoldi [15]. This condition requires that the source random variable 
(rv) and the two reproduction IT'S satisfy a Markov property. Rimoldi 
[ 151 also provided a complete characterization of the achievable rate 
region for two-step coding. 

In this correspondence, we determine the error exponents for 
the two-step coding process. It is then shown that even under the 
Markov condition, when the two rate-distortion functions coincide, 
the performance of the two-step coding process-as measured by its 
error exponents-may be inferior to that of one-step coding. 

11. PRELIMINARIES 
Let X be a finite set. Let {Xt}Y",l be a X-valued discrete memo- 

ryless source (DMS), i.e., an independent and identically distributed 
(i.i.d.) process, with (common) probability mass function (pmf) P. 
Let YI be a finite reproduction alphabet. Let d l :  X x Y ,  + R+ be a 
nonnegative-valued mapping with min,Ex,yEyl d ~ ( z ,  y)  = 0. This 
mapping induces a distortion measure on X" x Y;  according to 

An n-length block code consists of two mappings: An encoder 

and a decoder 

4 p :  M1+ Y;  

The rate of this code is RI  = $ log Mi.  All logarithms and 
exponentials are with respect to the base 2. 

For RI  > 0, A I  > 0, we say that the pair ( R I ,  AI)  is achievable 
if for every E > 0,s > 0 and n sufficiently large, there exists an 
n-length block code (f!"', of rate not exceeding R1 + S such 
that 

P r { ~ l ( ~ ' " , ~ j l l ' ( f i ( n ) ! ~ l L ) ) )  I A , > >  1--E 

The corresponding rate-distortion function, R (  P, AI ), characteriz- 
ing the minimum achievable rate for a distortion AI ,  is well known 

and given by 

where E denotes expectation. 
Let Yz be a (refining) finite reproduction alphabet. A refined 

descnption of the source {Xi}gl can be provided by means of a 
n-length i-ejining block code (fin', dp)), specified by an encoder 

f i n ' :  X" + M z  = {l , . . . ,Mz} 

and a decoder 

4g): MI x M Z  + Y;. 

The rate of the refining code (f in' ,  4p)) is defined as 

1 
n 

Rz = - lOgM1 Mz. 

Let dz:  X x Y2 + R+ be a nonnegative-valued mapping with 
min,Ex,y,y, d2(z,y) = 0, which induces a distortion measure on 
X" x according to 

x E X " ,  y E Y," 

Dejinition I (Rimoldi tl.51): For the DMS { X t } g I  with pmf P 
and distortion measures d l ,  dz,  the quadruple ( R I ,  R2, A I ,  Az), 
RI > Q,Rz > 0 , A l  > 0,Az > 0, is achievable if for every 
E > 0,6 > 0, and n sufficiently large, there exist 

an n-length code (fin), 4Y)) such that 

1 -1OgMI 5 RI + S n 
and 

Pr{di(X",4iR)(fl(lL)(Xn))) I A i }  2 1 - e 

an n-length refining code (fin), $a.)) such that 

1 
- lOgMiMz 5 Rz + S 
n 

and 

Pr{di(X",djll)(fl(")(X"))) I A i ,  

d2 ( X " ,  4p) (f!"'(X"), f i " ' ( X " ) ) )  5 A,} 2 1 - e. 

0 
A characterization of the set of achievable quadruples ( R I ,  Rz,  

AI ,  Az) has been provided independently by KoshClev [lo] and 
Rimoldi [15] and also follows as a combination of the results of 
El Gamal and Cover [3] and Yamamoto [19]. 

Theorem 1 (131, [lo], [15], [19]): Consider a DMS { X t } z l  
with pmf P and distortion measures d~ , dz . The quadruple (RI, Rz, 
A,, Az) is achievable iff there exists a pmf P X U ~ Y ~  on X x Y1 x 312 

with marginal P on X satisfying the following inequalities: 

I ( X  A YI) I R I ,  
Edi(X,K) L. A I ,  

I ( X  A KY,) 5 Rz 
E d z ( X , Y z )  I Az 

where ( X , Y , ,  Yz) is a X x Y1 x Yz-valued rv with pmf Pxy1y20.  
Suppose that the coding in the first step were done at rate R I  > 

R ( P , A i ) .  If the DMS is now to be described in a second step at 
distortion A, < AI ,  let E(P, R I ,  A I ,  A,) be the minimum rate Rz 
of the refining code such that ( R I ,  Rz ,  A I ,  A,) is achievable. This 
minimal rate R(P, R I ,  AI, A,) is characterized by the following 
Corollary to Theorem 1. 
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Suppose next that the coding in the first step at distortion A1 
were done optimally, i.e., RI li R(P, AI).  If the DMS is now to be 
described in a second step at distortion A2 < A,, what is the smallest 
possible amount of additional information required for this purpose? 

The following definition is a special case of Definition 1 for the 
situation wherein the first step is optimal. 

Definition 2: For the DMS {X,}& with pmf P, the rate RZ is 
(Ai,A,)-refinement-achievable if for every E > 0,5 > 0 and n 
sufficiently large, there exist 

an n-length code (ff"', 4p') such that 

and 

an n-length refining code ( f in) ,  41"') such that 

1 -1ogMiM2 5 R2+6 n 
and 

Pr{dl(X",~i")(f,(n)(Xn))) I A,, 
dz(X",4p)(f,("'(X"),fi")(Xn))) 5 A,} 2 1 - E .  

0 
Let R(P,A1,A2) denote the infimum of the set of (A,,A,)  

refinement-achievable rates. It constitutes the rate-distortion function 
for the refining code and is given by the following Corollary to 
Theorem 1 .  

Corollary 2: For A, > 0, A2 > 0, we have 

R(P, AI ,  A,) = R(P, R(P, Ai), AI ,  A,) 
inf I ( x  A YiY2). ( 2 )  - - 

P x = P  
Ed 1 ( X  Y i  15 A 1 
E ~ z ( X , Y Z ) < A Z  

J ( X A Y 1 ) = R ( P , P 1 )  

0 
Remarks: 
1) For di = d2, A i  = A2, and 3'1 = &, we have that 

R(P, Ai,  A,) = R(P, AI) ,  the minimum achievable rate for 
one-step coding. 

2 )  For two-step coding with A, < A,, and R(P,A,) > R1 > 
R(P, Ai) ,  clearly 

R ( P , A z )  I R(P,Rl,Al,Az) L: R(P,Ai,A2). 

KoshClev [9] has provided a sufficient condition for the in- 
equalities above to hold as equalities. Cover and Equitz [4] 
have independently shown this condition to be both necessary 
and sufficient (see Theorem 2 below). 

3) It follows from the observation of Equitz and Cover [4, p. 2711 
in the context of Gray's work [7] on conditional rate-distortion 
function that if {Y1,,},00=, is an i.i.d. process, then 

R(P, A i ,  A,) = R(P, Ai j + Rxly1(Az) 

However, Rx1yl(A2) is defined only when {Y1,t}Zl is an 
i.i.d. process, which, of course, does not hold in general. 

Theorem 2 (Cover and Equitz [4]): For the DMS { X t } &  with 
pmf P, given distortion measures d l  = d2 = d, reproduction 
alphabet YI = Y2 = Y ,  and for R(P,A,) > RI > R(P,A,), 
we have 

R(P, a,, A,) = R(P, R ~ ,  A,, A,) = R(P, A,) 

iff there exists a pmf Pxy1y2 on X x Y x Y with 

Px = P, 
R(P, AI)  = I ( X  A yi), 
R(P, A,) = I ( X  A Y2), 

Ed(X,Yi) 5 Ai 
Ed(X,Y,) 5 A2 

where ( X , Y i , Y 2 )  is a X x Y x Y-valued rv with pmf Pxy1y2. 
Furthermore, PXY, y2 must satisfy a Markov condition, namely 

PXY,Y2(~,Yi,YZj = PX(Z)PY21X(Y2 I ~)PY,IY2(Y1 I YZ),  

i.e., ( X ,  Yz,  Y I )  form a Markov chain. 

z E x, Y1,YZ E Y (3) 

0 

111. THE ERROR EXPONENTS 
In this section, we shall characterize the error exponents for 

successive refinement by partitioning. Corollaries 2 and 1 imply 
that for A, 5 A1 and for numbers R I ,  R2 with Ri < Rz and 
R1 > R(P,A,). Ra > R(P, R I ,  A,, A,), there exists a sequence 
of n-length block codes (ff"', d(ln)), (fin), dp)) ,  such that 

1 
n n  (4) lim - log = R I  

( 5 )  

and 

l imPr(d l (X" ,4 l ( f1(Xn)) )  > A l o r  
n 

dz(X",42(fi(Xn),f2(Xn))) > A,) = 0 

where l l f ~ n ) l l  (resp., /lfi")ll) denotes the cardinality of the domain 
of fin' (resp., f in'). Our objective is to characterize the rate of 
convergence to zero of the previous probability. 

Dejinition 3: For given distortion measures d l ,  d,, positive 
numbers A1 > A2 > 0, n-length block code (f~,&), and n- 
length refining block code (f,, qh), we define the error function 
e(P, (fl, &), (fi, $,), AI,  A,) as the probability that the source 
sequence X" in X" of the DMS with (common) pmf P is not 
reproduced within distortion A1 in the first step of coding, or within 
distortion A2 by the refining code. Thus the error function for 
two-step coding is defined as 

e(P, (f1,41)> (f2,42),Al, A2) 
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Definition 4: The conditional error function e( P, ( fl , d1 ) . (f2, 
4 2 ) ,  A2 I R I ,  A I )  is the probability that the source sequence X" 
in X" is not reproduced within distortion A2 by the refining code, 
given that ( f l ,  &), i.e., the code for the first step, has rate that does 
not exceed R1 and distortion that does not exceed Al. Thus 

0 
We show below for suitable two-step n-length block codes 

with rates converging to RI and R2, that e(P,  (f,'"', $in)), 
( f i n ) ,  dp) ) ,  A,, A,) converges to zero exponentially rapidly with 
rate given by the error exponent 

provided RI > R(P,A,)  and RZ > R(P,R1,Ai,A2). This 
provides an extension of the result of Marton [ 111 (cf. also Csisz&r and 
Korner [2]) on the error exponent for one-step coding. Our approach 
is along the lines of CsiszAr and Komer [2, sec. 2.41. 

It follows from [6] that upon setting d l  = dz,  Ai = A2, Y1 = Y Z  
and dz(m1,mz) = 4l(ml) ,  mi E M1,mz E M Z  that 

e (P ,  (fl,4l),(f2,42),Al,~2) = e ( P ? ( f l , d l ) , A l )  

where the term on the right side above corresponds to the error 
function for one-step coding which converges to zero exponentially 
rapidly with rate given by the error exponent 

(9) 

provided RI > R(P, A,) (cf. Marton [Ill,  CsiszAr and Komer [2]) .  
We further show that for suitable two-step n-length block codes 

with rates converging to RI and Rz,  that e(P,  ( f l ,  $1). ( f ~ ,  $ 2 ) .  A2 I 
R I ,  Ai) ,  i.e., the conditional error function converges to zero expo- 
nentially rapidly with rate given by the error exponent 

Theorem 3 (Two-step Coding Error Exponent): Let { X t } ~ i  be a 
DMS with pmf P. For every RI < Rz < loglXl and distortion 
measures d l  on X x Y1 and d2 on X x Yz, there exists a sequence 
of n-length block codes for two-step coding such that 

1 
n n  

lim -log 11f;")ll = R~ 

(10) 

> 0,& > 0.  

1 
and 

li,m ; log l l f ; " ) l l  l l f i ( n ) I I  = R2 

for every pmf P on X, A I  > A2 2 0, and 
5 3  > 0 

1 
- loge(P ,  n (f!"',4P)),A1) I - F ( P , R l , A l )  $61 

and 

Further, for every sequence of codes satisfying (10) and every 
distribution P on X ,  the following hold: 

1 
liminf n-co - loge(P,(f , (") ,4i")) ,a i )  n 

liminf - loge(P,  ( f in ' ,  4P)), ( f i n ) , d ? ) ) , ~ i , ~ z )  
2 -F(f', R I ,  A i )  

1 
RI- n 

> - - F ( P , R ~ , R ~ , A , , A ~ )  

and 
1 

l iminf- loge(P,  n-m n ( f , ' n ) , d p ) ) ,  ( f i n ) , 4 p ) ) , ~ z  I R ~ , A ~ )  
2 -FC(P,Rz,Az I R1,AI). 0 

Remark: Note that the two-step code in the statement of the 
forward part of Theorem 3 does not rely on a knowledge of the pmf 
P of the DMS. Hence, this code is universal in that it is applicable 
to any X-valued DMS. 

As is to be expected, the error exponent for two-step coding cannot 
exceed that for one-step coding. This is obvious from (8) by observing 
for d l  = dz = d and Y1 = YZ = 7, that 

F(P.  Ri, Rz.  Ai ,  A,) 
= min { F(P,  R I ,  AI) ,  F,( P, R2, A2 I R I ,  AI)}. (1 1) 

Even with the Markov condition in effect so that the rate-distortion 
functions for one- and two-step coding coincide, i.e. 

R(P, R I ,  Ai ,  A,) = R(p,  Az), A2 < Ai 

note that if 

F ( P ,  R I ,  A i )  < Fc(P,  Rz ,  A2 I R I ,  A i )  (12) 

then 

F ( P ,  Ri, Rz, A i ,  A,) < F ( P ,  Rz, Az). (13) 

This is illustrated in the following example. 

0, 
Hamming distortion measure. Thus 

Exumple: Let {Xt}gl be a DMS with pmf P ,  where P ( x )  > 
x E X .  Let y1 = yz = y ,  and d l  = da = d where d denotes 

1 "  
d ( z , y )  = ; Cl(Zt # Yt), 2 E X", y E Y " .  

t = i  

It was shown in [4] that this setup admits the Markov condition so that 

R(P,Ri,Ai,Az) = R(p,Az) .  

Next, note that 

R(P, RI,  41, Az) = R(P,  az) 
H ( P )  - A2 lOg(1Xl - 1) 
- hb(Az), A i  2 Az 

where H ( P )  is the entropy of E'. It then follows from (9) and (8) 
that the exponents for one- and two-step coding are 

where 

c(R,A)  4 A l O g ( l X I - l ) + h b ( A ) + R .  

Let 

&, 2 { Q :  H ( Q )  > a } ,  a 2 0.  
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Now, the necessary and sufficient condition for (12) and (13) to hold 
can be expressed as & c ( ~ l , ~ l )  3 & c ( ~ 2 , ~ , ) ,  or, equivalently 

c(Ri, A i )  < c (Rz ,  Az) 

which is the same as 

R(P,  A i )  < RI < Rz - [R(P, A,) - R(P, Ai)] 

The condition above says that, with the Markov condition in effect, 
the error exponent (15) for two-step coding is worse than that for 
one-step coding iff 

Rz - R(P, A,) > RI - R(P, Ai). (16) 

Note that this condition is given by (14) and (15) as D ( Q z  1 1  P )  < 
D(Q1 II P) ,  where 

This means that in the case of the Hamming distortion measures 
(divergence) distances in the space of pmf's on X correspond to 
distances (differences) between the actual rates and the corresponding 
values of the rate-distortion functions. 

Clearly, if R I ,  Rz are chosen to violate inequality (16), e.g., with 
R I  large enough, the two-step coding process will no longer suffer 
from the disadvantage of a smaller error exponent. 

The proof of Theorem 3 relies on the following Covering Lemma 
for two-step coding, which is a straightforward extension of the 
corresponding lemma for one-step coding [2, Lemma 2.4.11. 

Let P = P(") be a type on X (cf. e.g., [2j), i.e., a pmf with 
rational probabilities with (common) denominator n. Let 7; denote 
the set of sequences in X" of (common) type P. 

Lemma 1: For distortion measures d l  on X x y1 and d2 on 
X x Y z ,  type P = P(") on X and numbers A1 > A2 > 0, 
RI > R(P,A,) ,  SI > 62 > 0, there exist 

a set BI C yy, such that 

Proof of Theorem 3: We commence with the existence part of the 
proof. It is convenient to define the following quantities: For a pmf 
Q on X and R2 > RI > 0, let 

A(Q,Ri)  inf Ed1 ( X ,  Yl ) 
P x = Q , I ( X A Y i ) < R i  

and 

Consider the sets 

U 7; U,(") 4 
Q R ( Q , A i ) > R i  

and 

U;"' Up) U T; . 
Q R(Q,Ri ,Ai ,Az)>Rz 

Obviously 

P"(Ul(")) 5 ( n +  1 ) l x i e x p { - n F ( P , R 1 , A ~ ) }  

5 exp{-n[F(P ,Ri ,Al)  -Si]} 

for all n large (cf. [2, Lemma 1.2.6]), and 

P" (Mi")) 5 (n  + exp {-nF,(P, Rz, A2 I R I ,  AI)}  
I exp{-n[Fc(P,Rz,A2 I R i , A i )  - 6211 

for all n large. Next, by Lemma 1, there exist sequences e?' and 
c p )  with lim, EY) = 0 and limn $) = 0, such that for every 
type Q of sequences in X", there exist sets B Q , ~  C YE and 
BQ,Z(Yl) c YF,Yi E BQ,1 ,  satisfying 

1 
- log IBQ,l I I RI + n 

and 

dz(z9 BQ,Z(yi)) 
- min d z ( z , y z )  I A(Q,Ri ,Ai ,Rz) ,  Y, E B Q , ~  

1 2  EBQ , 2  ( P i )  

for x such that dl(z ,y , )  AI .  Next, we set 

B1 45 UBQ,l 
Q 

B2(Yi) BQY1,2(Yi), Y i  B 1 ,  

where QVl is the type of yl .  Then, the Type Counting Lemma [2, 
Lemma 1.2.21 yields that 

1 
- log IBi I I Ri + vi") n 

where limn 71") = limn 7;") = 0. Furthermore, R(Q, Ai)  5 Ri 
implies in a standard manner that 

A(Q,Ri)  I A i  (19) 



280 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 1, JANUARY 1996 

and R(Q, RI, A I ,  A,) 5 R2 implies 

A(Q, R I ,  A i ,  Rz) I Az (20) 

which is seen as follows. 

where the rv ( X ,  Y1, Yz) is distributed according to Pgyly2. Then 
Let P ~ y l y 2  achieve R(&, RI ,Ai ,Az)  = I(X A YiYz) 5 Rz, 

As a consequence of (19) and (20), we have 

These inequalities establish the direct (existence) part of the proof. 

property that 
Turning to the converse part, consider any pmf Q on X with the 

R(Q,Ri ,Ai ,Az)  > Rz+Sz. (21) 

IV. DISCUSSION 
We have determined the error exponent for the problem of succes- 

sive refinement by partitioning for a DMS. As expected, it is generally 
smaller than the error exponent for one-step coding. It is interesting 
to note that even when the Markov condition (3) holds so that the 
rate-distortion functions coincide for one-step and two-step coding, 
it may hold that the error exponents for the latter are strictly smaller 
than that for the former. 

For a DMS with Hamming distance distortion measure, a simple 
necessary and sufficient condition for the error exponents to differ 
in the presence of Markov condition, can be expressed in terms of 
the coding rates RI ,  Rz and the one-step rate-distortion function. 
An extension of this result to arbitrary distortion measures remains 
unresolved. 

Finally, it can be shown that the error function for two-step 
coding (cf. (6)) goes to one exponentially fast, whenever Rz < 
R(P, AI,  Az).  To this end, we conclude from Rimoldi ([ 15, Theorem 
1, converse part]) that if Rz < (P ,  R I ,  A,,  Az), then for every 
sequence of n-length block codes satisfying (4) and (5), we have 

l ime(P,  1z ( f i n ' , b p ) ) ,  ( f i " ) , d p ) ) , ~ ~ , ~ ~ )  = 1. 

Indeed, in analogy with one-step coding (cf. CsiszL and Korner [2, 
sec. 2.4]), this convergence occurs exponentially fast. To see this, 
define 

e'"'(P, RI, Rz,  A i ?  A,) The remainder of the proof relies on the following Claim which 
constitutes a strong converse to Theorem 1. 

Claim 1: For any sequence of codes (fl"', dj"'), (fin', dp)) A min e(P, ( f i n ' ,  $PI), (fin', $a.)), A,, A,) 

where the minimum is taken over all codes satisfying (4) with with 

1 RI > R(P,Al) and -log ~ ~ f ~ " ) ~ ~  5 RI + 61 
1 n 

n 
1 -loglIfin)llllf2n)ll n I Rz 
- log ilfl'"' 1 1  llfi"' 1 1  I RZ + 62 

1 
e ( Q ,  ( d n ) , 4 j " ) ) ,  ( d " ) , d ? ) ) , ~ z  I ~ i , ~ i )  2 5 

where 0 < Rz < R(P, A,, A2). Then, it holds that 

lip { -: log [1 - e'"'(P, R I ,  R2,Al ,Az)]}  
for all n large, (21) implies 

= G(Ri, Rz, Ai ,  A,) 
whenever n 2 N(d1 ,  d z ,  SI, 62). 

Theorem 2.2.31, and is, therefore, omitted. 

e ( p ,  (fin', 4?)), (A"', d e ) ) ,  ~2 I ~ 1 ,  A,) 

The proof of the Claim is obtained by mimicking the proof of [Z, 

Then, by [2. Corollary 1.1.21 it holds for all n large enough that 

2 ~ X P  { - n [ D ( Q  II P )  + S i l l .  
Note that the case R(Q,Al)  > RI + 61 alone was shown ([2, 
Theorem 2.4.51) to imply that 

e(p,  (fin),  d?)), Ai)  2 exp{-n[D(Q II P )  + 611). 

Since S1,Sz were arbitrary as was Q subject to (21), the desired 
converse follows. 

It is obvious that, since 

where 

G(R1, Rz, AI, A,) = inf ( D ( Q  1 1  P )  + I  R(Q, RI AI ,  A,) - Rz I+) 

with lzl+ denoting max{z,O}. The proof is identical to that for 
one-step coding (cf. eg., Csiszkr and Komer [2, problem 2.4.6, pp. 
158-1591) and relies on the strong converse (Rimoldi, [15, Theorem 
1, converse part]). 

Q 

APPENDIX 
PROOF OF LEMMA 1 

Let P = P(") be a fixed but arbitrary type of sequences in X". 
Let U ( & )  and U ( B z ( y , ) ) ,  respectively, denote the subsets of 7; 
not covered by B1 and &(y,), i.e. 

and 
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Consider a X x y1 x &-valued RV ( X ,  Y1, Yz) with PX = P and 
+ 
+ E d i ( X , Y i )  = - 711 

Edn(X,Yz) I lAz - 721 

where 171 > 0,172 > 0 will be specified later. 
Let Tyll (resp., ~ y z , y l l ( y l ) )  denote the set of YI-typical se- 

quences y1 E Y ;  (resp., Y2 I Y1-typical sequences y2 E Y; with 
respect to y1 E J'r) [2, Definitions 1.2.8, 1.2.9, pp. 33-34]. Let 
Fm denote the set of all (not necessarily distinct) collections of m 
elements of TYl1. Similarly, for i = 1,. . . , m, let G,, (yl)  denote 
the set of all (not necessarily distinct) collections of nZ elements of 

(22) 

TYz lYl] (Yl). 
Let 2" = (Z1,. ..,Zm) be an RV uniformly distributed on 

Fm. Next, for i = l , . . .  , m, given that 2, = zz ,  let Wzn' = 
(W%I, .  . . , W,,,), be an RV distributed (conditionally) uniformly on 
G,,(zz). In other words, 2%'~ are i.i.d. with 

and the Wz3's are conditionally i.i.d., with 

Pr{Wz, = wt3 I 2, = zt} 

We must show the existence of sets BI C Y;  and Bz(yl) C 
Y;, y1 E BI,  such that 

To this end, it suffices to show that 

Claim 2: For any 6' > 0, we have 

IA(z)I I exp [n(H(Yl)  - R(P, A I )  + S')] 
for all n 2 N~(d1,7l,S'). 

The second term on the right side of (23) is 
Then, the remainder of the proof of the Lemma is straightforward. 

Further 

n 2  

= r l [ P r { z ~ N z ( W ~ ~ ) ~ l Z ~ = ~ }  

= ~ ~ [ ( ~ - P ~ { Z E N ~ ( W ~ ~ ) I Z ~  = z > )  

I n (1 - Pr { w,, E q?z;lx~ (x) I 2, = z } )  

j=1 

n2 

3=1 

n2 

3=1 

where the previous inequality follows as in [2, p. 1.511. We continue 
the bounding according to 

Now n, 

I rI (1 - Pr { wt, E q F z / x , Y l ]  (x, 2) I 2% = z}) 
3 = 1  

for all n 2 N3(dzrqz) (cf. [2, p. 1511). Furthermore, the right side 
above is bounded above by 

m 

5 Pr{x E U ( Z m ) }  + C P r { x  E U(W:")}.& (23) 
Z H p "  z€lp" 2 = 1  with 6; a 62 - SI, for all n 2 N4(d~,72,61,52), which in turn 

does not exceed 

exp [ -exp $1 We consider first the first term on the right side of the inequality 
above. By choosing 

provided that 

I ( X A Y ~ I Y I ) + - ~ ;  3 I >  
A Y~ I ~ 1 )  + ;& . I >  we get that 

Pr (3: E U ( z m ) }  5 exp (24) Hence, we can finally bound the second term on the right side of 
ZElp" (23)  as 

2 Pr{x E ZA(WP~)} for all n 2 NI(&, d1,71) (cf. e.g., [2, p. 1521). Next, to bound the 
second term on the right side of (23), for each x E 'TP, let 

2C:lp" 2 = 1  

A(z) A { Z  E Tyll: x E N I ( Z ) }  = { Z  E Ty1]: d l ( ~ , z )  5 AI}. 

Assume for the time being, the following 
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Using the facts so that 

and Claim 2, the right side above is easily seen to be bounded by 

for all n 2 N5(51,54) (because RI - R(P, A I )  5 log 1x1). Finally, 
we obtain from (24) and (25 )  that 

for all 

n 2 N ( d i , d a , q 1 , q ~ , 6 1 , & )  = max{N1:..,Ns}. 

It then follows for all n suitably large that there exist sets B1 C YF, 
Bz(Y,) C YZn, it E ,131, such that 

1,1311 5 m, IBz(Y~)I i nz,  i = l , . . . , m  

so that 

2 = 1  i=l 

Equivalently 

1 3 
n 
1 3 
- log 1,1321 5 I ( X  A KYz) + 262, 
n 

Assume that I ( X  A Y1) I RI .  Then by the uniform continuity of 
R(P, R I ,  A,, A,) (which follows analogously as in [2, Lemma 2.2.2, 
pp. 124-1251), the desired inequalities (17), (18) follow for 7 1 , q z  
sufficiently small (cf. (22)). 

It remains to establish the Claim. To this end, observe that z E 
A(x)  iff 

- log 1,131 I I I ( X  A Yl) + 461 

(26) 

z E TY1] and d ~ ( z ,  z )  = E p , v [ d l ( X , Y ) ]  I A I  

where ( X , Y )  is a X x Y1-valued r.v. with joint pmf equal to the 
joint type P,V of ( z , z ) .  Further, 

H ( V  I Pz) = H(P,) - I ( X  A p) 
6’ 
3 
5’ 

= H(Y1)  + 7 - R(P, AI)  

5 H ( Y ~ )  + - - m i n I ( X  A F) 

(27) 

where the inequality follows for all n large (depending on 5’) from 
[2, Lemma 1.2.71 and the minimum is taken over all r.v.’s ( X , Y )  
such that PX = P, and E d l ( X , Y )  5 AI.  

Hence, finally 

for all n 2 .Nz(d1,q1, S’), where the inequality above is a conse- 
quence of (27). 
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